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We outline an introduction to quantum mechanics based on the sum-over-paths method originated
by Richard P. Feynman. Students use software with a graphics interface to model sums associated
with multiple paths for photons and electrons, leading to the concepts of electron wavefunction, the
propagator, bound states, and stationary states. Material in the first portion of this outline has been
tried with an audience of high-school science teachers. These students were enthusiastic about the
treatment, and we feel that it has promise for the education of physicists and other scientists, as
well as for distribution to a wider audience. ©1998 American Institute of Physics.
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Thirty-one years ago, Dick Feynman told me about
‘‘sum over histories’’ version of quantum mechanics. ‘‘Th
electron does anything it likes,’’ he said. ‘‘It just goes
any direction at any speed, . . . however it likes, and then
you add up the amplitudes and it gives you the wa
function.’’ I said to him, ‘‘You’re crazy.’’ But he wasn’t.

--Freeman Dyson, 19801

INTRODUCTION

The electron is a free spirit. The electron knows nothing
the complicated postulates or partial differential equation
nonrelativistic quantum mechanics. Physicists have kno
for decades that the ‘‘wave theory’’ of quantum mechan
is neither simple nor fundamental. Out of the study
quantum electrodynamics~QED! comes Nature’s simple
fundamental three-word command to the electron: ‘‘E
plore all paths.’’ The electron is so free-spirited that it r
fuses to choose which path to follow—so it tries them a
Nature’s succinct command not only leads to the results
nonrelativistic quantum mechanics but also opens the d
to exploration of elementary interactions embodied
QED.

Fifty years ago Richard Feynman2 published the
theory of quantum mechanics generally known as ‘‘the p
integral method’’ or ‘‘the sum over histories method’’ o
‘‘the sum-over-paths method’’~as we shall call it here!.
Thirty-three years ago Feynman wrote, with A. R. Hibbs,3 a
more complete treatment in the form of a text suitable
study at the upper undergraduate and graduate level.
ward the end of his career Feynman developed an eleg
brief, yet completely honest, presentation in a popular b

a!Now at the Center for Innovation in Learning, Carnegie Mellon Univ
sity, 4800 Forbes Ave., Pittsburgh, PA 15213; E-mail: eftaylor@mit.e

b!vokos@phys.washington.edu
c!joh3n@geophys.washington.edu
d!nthornbe@rvcc.raritanval.edu
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written with Ralph Leighton.4 Feynman didnot use his
powerful sum-over-paths formulation in his own introdu
tory text on quantum mechanics.5 The sum-over-paths
method is sparsely represented in the physics-educa
literature6 and has not entered the mainstream of stand
undergraduate textbooks.7 Why not? Probably because unt
recently the student could not track the electron’s explo
tion of alternative paths without employing complex mat
ematics. The basic idea is indeed simple, but its use
application can be technically formidable. With curre
desktop computers, however, a student can command
modeled electron directly, pointing and clicking to sele
paths for it to explore. The computer then mimics Nature
sum the results for these alternative paths, in the proc
displaying the strangeness of the quantum world. This
of computers complements the mathematical approach u
by Feynman and Hibbs and often provides a deeper se
of the phenomena involved.

This article describes for potential instructors the c
riculum for a new course on quantum mechanics, b
around a collection of software that implements Feynma
sum-over-paths formulation. The presentation begins w
the first half of Feynman’s popular QED book, which trea
the addition of quantum arrows for alternative photon pa
to analyze multiple reflections, single- and multiple-slit i
terference, refraction, and the operation of lenses, follow
by introduction of the spacetime diagram and application
the sum-over-paths theory to electrons. Our course t
leaves the treatment in Feynman’s book to develop the n
relativistic wavefunction, the propagator, and bound sta
In a later section of this article we report on the response
a small sample of students~mostly high-school science
teachers! to the first portion of this approach~steps 1–11 in
the outline!, tried for three semesters in an Internet co
puter conference course based at Montana S
University.8
© 1998 AMERICAN INSTITUTE OF PHYSICS 0894-1866/98/12~2!/190/10/$15.00
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I. OUTLINE OF THE PRESENTATION

Below we describe the ‘‘logic line’’ of the presentation
which takes as the fundamental question of quantum
chanics: Given that a particle is located atxa at time ta ,
what is the probability that it will be located atxb at a later
time tb? We answer this question by tracking the rotati
hand of an imaginary quantum stopwatch as the part
explores each possible path between the two events.
entire course can be thought of as an elaboration of
fruitful consequences of this single metaphor.

Almost every step in the following sequence is acco
panied by draft software9 with which the student explore
the logic of that step without using explicit mathematic
formalism. Only some of the available software is illu
trated in the figures. The effects of spin are not included
the present analysis.

A. The photon

Here are the steps in our presentation.
„1… Partial reflection of light: An everyday observa-

tion. In his popular bookQED, The Strange Theory o
Light and Matter,Feynman begins with the photon inte
pretation of an everyday observation regarding light: par
reflection of a stream of photons incident perpendicula
the surface of a sheet of glass. Approximately 4% of in
dent photons reflect from the front surface of the glass
another 4% from the back surface. For monochroma
light incident on optically flat and parallel glass surface
however, the net reflection from both surfaces taken
gether is typically not 8%. Instead, it varies from nearly 0
to 16%, depending on the thickness of the glass. Class
wave optics treats this as an interference effect.

„2… Partial reflection as sum over paths using quan-
tum stopwatches. The results of partial reflection can als
be correctly predicted by assuming that the photon explo
all paths between emitter and detector, paths that incl
single and multiple reflections from each glass surface.
hand of an imaginary ‘‘quantum stopwatch’’ rotates as
photon explores each path.10 Into the concept of this imagi
nary stopwatch are compressed the fundamental stra
ness and simplicity of quantum theory.

„3… Rotation rate for the hand of the photon quan-
tum stopwatch. How fast does the hand of the imagina
photon quantum stopwatch rotate? Students recover al
results of standard wave optics by assuming that it rota
at the frequency of the corresponding classical wave.11

„4… Predicting probability from the sum over paths.
The resulting arrow at the detector is the vector sum of
final stopwatch hands for all alternative paths. The pr
ability that the photon will be detected at a detector is p
portional to the square of the length of the resulting arr
at that detector. This probability depends on the thickn
of the glass.

„5… Using the computer to sum selected paths for
the photon. Steps 1–4 embody the basic sum-over-pa
formulation. Figure 1 shows the computer interface fo
later task, in which the student selects paths in two sp
dimensions between an emitter and a detector. The stu
clicks with a mouse to place an intermediate point t
determines one of the paths between source and dete
The computer then connects that point to source and de
-

e

l

-

e

t

r.
-

tor, calculates rotation of the quantum stopwatch along
path, and adds the small arrow from each path~length
shown in the upper right corner of the left-hand pan!
head-to-tail to arrows from all other selected paths to yi
the resulting arrow at the detector, shown at the right. T
figure in the right-hand panel approximates the Cornu s
ral. The resulting arrow is longer12 than the initial arrow at
the emitter and is rotated approximately 45° with respec
the arrow for the direct path. These properties of the Co
spiral are important in the later normalization of the arro
that results from the sum overall paths between emitter an
detector~step 16!.

B. The electron

„6… Goal: Find the rotation rate for the hand of the
electron quantum stopwatch. The similarity between
electron interference and photon interference suggests
the behavior of the electron may also be correctly predic
by assuming that it explores all paths between emission
detection.~The remainder of this article will examine pa
ticle motion in only a single spatial dimension.! As before,
exploration along each path is accompanied by the rota
hand of an imaginary stopwatch. How rapidly does t
hand of the quantum stopwatch rotate for theelectron? In
this case there is no obvious classical analog. Instead
prepare to answer the question by summarizing the cla
cal mechanics of a single particle using the principle
least action~Fig. 2!.

„7… The classical principle of least action. Feynman
gives his own unique treatment of the classical principle
least action in his book,The Feynman Lectures o
Physics.13 A particle in a potential follows the path of leas
action ~strictly speaking, extremal action! between the
events of launch and arrival. Action is defined as the ti
integral of the quantity~KE2PE! along the path of the
particle, namely,

Figure 1. A single photon exploring alternative paths in two space dim
sions. The student clicks to choose intermediate points between sourc
detector; the computer calculates the stopwatch rotation for each path
adds the little arrows head-to-tail to yield the resulting arrow at the d
tector, shown at the right.
COMPUTERS IN PHYSICS, VOL. 12, NO. 2, MAR/APR 1998 191
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worldline

~KE2PE!dt. ~1!

Here KE and PE are the kinetic and potential energies
the particle, respectively. See Fig. 2.

This step introduces the spacetime diagram~a plot of
the position of the stone as a function of time!. Emission
and detection now becomeevents,located in both space
and time on the spacetime diagram, and the idea ofpath
generalizes to that of theworldline that traces out on the
spacetime diagram the motion of the stone between th
endpoints. The expression for action is the first equat
required in the course.

„8… From the action comes the rotation rate of the
electron stopwatch. According to quantum theory,14 the
number of rotations that the quantum stopwatch make
the particle explores a given path is equal to the actioS
along that path divided by Planck’s constanth.15 This fun-
damental~and underived! postulate tells us that the fre
quency f with which the electron stopwatch rotates as
explores each path is given by the expression16

f 5
KE2PE

h
. ~2!

„9… Seamless transition between quantum and clas
sical mechanics. In the absence of a potential~Figs. 3 and
4!, the major contributions to the resulting arrow at t
detector come from those worldlines along which the nu
ber of rotations differs by one-half rotation or less from th
of the classical path, the direct worldline~Fig. 5!. Arrows
from all other paths differ greatly from one another in d
rection and tend to cancel out. The greater the part
mass, the more rapidly the quantum clock rotates@for a
given speed in Eq.~2!# and the nearer to the classical pa

Figure 2. Computer display illustrating the classical principle of lea
action for a 1-kg stone launched vertically near the Earth’s surface
trial worldline of the stone is shown on a spacetime diagram with the t
axis horizontal (as Feynman draws it in his introduction to action in R
13). The student chooses points on the worldline and drags these poin
and down to find the minimum for the value of the actionS, calculated by
the computer and displayed at the bottom of the screen. The tabl
numbers on the right verifies (approximately) that energy is conserved
the minimum-action worldline but is not conserved for segments 3 an
which deviate from the minimum-action worldline.
192 COMPUTERS IN PHYSICS, VOL. 12, NO. 2, MAR/APR 1998
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are those worldlines that contribute significantly to the fin
arrow. In the limit of large mass, the only noncanceli
path is the single classical path of least action. Figures 3
and 5 illustrate the seamless transition between quan
mechanics and classical mechanics in the sum-over-p
approach.

C. The wavefunction

„10… Generalizing beyond emission and detection at
single events. Thus far we have described an electr
emitted from a single initial event; we sample alternati
paths to construct a resulting arrow at a later event. But
later event can be in one of several locations at a given l
time, and we can construct a resulting arrow for each
these later events. This set of arrows appears along a s
horizontal ‘‘line of simultaneity’’ in a spacetime diagram

p

f

Figure 3. Illustrating the ‘‘fuzziness’’ of worldlines around the classic
path for a hypothetical particle of mass 100 times that of the elect
moving in a region of zero potential. Worldlines are drawn on a spacet
diagram with the time axis vertical (the conventional choice). The parti
is initially located at the event dot at the lower left and has a probabil
of being located later at the event dot in the upper right. The three wo
lines shown span a pencil-shaped bundle of worldlines along which
stopwatch rotations differ by half a revolution or less from that of t
straight-line classical path. This pencil of worldlines makes the ma
contribution to the resulting arrow at the detector (Fig. 5).

Figure 4. Reduced ‘‘fuzziness’’ of the pencil of worldlines around t
classical path for a particle of mass 1000 times that of the electron
times the mass of the particle whose motion is pictured in Fig. 3). B
this and Fig. 3 illustrate the seamless transition between quantum
classical mechanics provided by the sum-over-paths formulation.
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as shown in Fig. 6. In Fig. 6 the emission event is at
lower left and a finite packet is formed by selecting a sh
sequence of the arrows along the line of simultaneity
time 5.5 units. A later row of arrows~shown at time 11.6
units! can be constructed from the earlier set of arrows
the usual method of summing the final stopwatch arro
along paths connecting each point on the wavefunction
the earlier time to each point on the wavefunction at
later time. In carrying out this propagation from the earl
to the later row of dots, details of the original single em
sion event~in the lower left of Fig. 6! need no longer be
known.

In Figs. 6 and 7 the computer calculates and dra
each arrow in the upper row~time near 12 units in both

Figure 5. Addition of arrows for alternative paths, as begun in Fig. 1. T
resulting arrow for a (nearly) complete Cornu spiral (left) is approx
mated (right) by contributions from only those worldlines along which
number of rotations differs by one-half rotation or less from that of
direct worldline. This approximation is used in Figs. 3 and 4 and in o
later normalization process (step 16 below).

Figure 6. The concept of ‘‘wavefunction’’ arises from the application
the sum-over-paths formulation to a particle at two sequential times.
student clicks at the lower left to create the emission event, clicks to s
the endpoints of an intermediate finite packet of arrows, then clicks o
above these to choose a later time. The computer samples worldlines
the emission (whose initial stopwatch arrow is assumed to be verti
through the intermediate packet, constructing a later series of arrow
possible detection events along the upper line. We call this series o
rows at a given time the ‘‘wavefunction.’’ This final wavefunction can
derived from the arrows in the intermediate packet, without consider
the original emission (Ref. 17).
t

figures! by simple vector addition of every arrow
propagated/rotated from the lower row~time 5.5 units in
Fig. 6, time 3 units in Fig. 7!. Each such propagation
rotation takes place only along the SINGLE direct worl
line between the initial point and the detection point—NO
along ALL worldlines between each lower and each up
event, as required by the sum-over-paths formulation. Ty
cally students do not notice this simplification. Steps 12–
repair this omission, but to look ahead we remark that fo
free particle the simpler~and incomplete! formulation illus-
trated in Fig. 7 still approximates the correctrelative prob-
abilities of finding the particle at different places at the lat
time.

„11… The wavefunction as a discrete set of arrows.
We give the name~nonrelativistic! wavefunctionto the col-
lection of arrows that represent the electron at vario
points in space at a given time. In analogy to the intens
in wave optics, the probability of finding the electron at
given time and place is proportional to the squared mag
tude of the arrow at that time and place. We can now
vestigate the propagation forward in time of an arbitra
initial wavefunction ~Fig. 7!. The sum-over-paths proce
dure uses the initial wavefunction to predict the wavefun
tion at a later time.

Representing a continuous wavefunction with a fin
series of equally spaced arrows can lead to computatio
errors, most of which are avoidable or can be made ins
nificant for pedagogic purposes.18

The process ofsamplingalternative paths~steps 1–11
and their elaboration! has revealed essential features
quantum mechanics and provides a self-contained, larg
nonmathematical introduction to the subject for those w
do not need to use quantum mechanics professionally. T
has been tried with students, with the results described l
in this article. The following steps are the result of a yea
thought about how to extend the approach to include c
rectly ALL paths between emission and detection.

D. The propagator

„12… Goal: Sum ALL paths using the ‘‘propaga-
tor.’’ Thus far we have beensamplingalternative paths

t

Figure 7. An extended arbitrary initial wavefunction now has a life of
own, with the sum-over-paths formulation telling it how to propagate f
ward in time. Here a packet moves to the right.
COMPUTERS IN PHYSICS, VOL. 12, NO. 2, MAR/APR 1998 193
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between emitter and detector. Figures 1, 3, and 4 imply
use of only a few alternative paths between a single em
sion event and a single detection event. Each arrow in
final wavefunction of Fig. 7 sums the contributions alo
just asinglestraight worldline from each arrow in the in
tial wavefunction. But Nature tells the electron~in the cor-
rected form of our command!: Explore ALL worldlines.To
draw Fig. 7 correctly we need to take into account pro
gation along ALL worldlines—including those that zigza
back and forth in space—between every initial dot on
earlier wavefunction and each final dot on the later wa
function. If Nature is good to us, there will be a simp
function that summarizes the all-paths result. This funct
accepts as input the arrow at a single initial dot on
earlier wavefunction and delivers as output the correspo
ing arrow at a single dot on the later wavefunction due
propagation via ALL intermediate worldlines. If it exist
this function answers the fundamental question of quan
mechanics: Given that a particle is located atxa at timeta ,
what is the probability~derived from the squared magn
tude of the resulting arrow! that it will be located atxb at a
later timetb? It turns out that Nature is indeed good to u
such a function exists. The modern name for this funct
is the ‘‘propagator,’’ the name we adopt here because
function tells how a quantum arrowpropagatesfrom one
event to a later event. The function is sometimes called
‘‘transition function’’; Feynman and Hibbs call it the ‘‘ker
nel,’’ leading to the symbolK in the word equation

S arrow at
later eventbD5K~b,a!S arrow at

earlier eventaD . ~3!

The propagatorK(b,a) in Eq. ~3! changes the magni
tude and direction of the initial arrow at eventa to create
the later arrow at eventb via propagation along ALL
worldlines. This contrasts with the method used to dr
Fig. 7, in which each contribution to a resulting upper
row is constructed by rotating an arrow from the initi
wavefunction along the SINGLE direct worldline only. I
what follows, we derive the propagator by correcting t
inadequacies in the construction of Fig. 7, but for a simp
initial wavefunction.

„13… Demand that a uniform wavefunction stay uni-
form. We derive the free-particle propagator heuristica
by demanding that an initial wavefunction uniform in spa
propagate forward in time without change.19 The initial
wavefunction, the central portion of which is shown at t
bottom of Fig. 8, is composed of vertical arrows of equ
length. The equality of the squared magnitudes of th
arrows implies an initial probability distribution uniform i
x. Because of the very wide extent of this initial wavefun
tion along thex direction, we expect that any diffusion o
probability will leave local probability near the center co
stant for a long time. This analysis does not tell us that
arrows will also stay vertical with time, but we postula
this result as well.20 The student applies a trial propagat
function between every dot in the initial wavefunction a
every dot in the final wavefunction, modifying the prop
gator until the wavefunction does not change with time,
shown in Fig. 10.

„14… Errors introduced by sampling paths. In Fig.
8, we turn the computer loose, asking it to construct sin
194 COMPUTERS IN PHYSICS, VOL. 12, NO. 2, MAR/APR 1998
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arrows at three later times from an initially uniform wav
function shown along the bottom. The computer deriv
each later arrow incorrectly by propagating/rotating t
contribution from each lower arrow along a SINGLE dire
worldline, then summing the results from all these dire
worldlines, as it did in constructing Fig. 7. The resultin
arrows at three later times are shown in Fig. 8 at one-fi
their actual lengths. These lengths are much too grea
represent a wavefunction that does not change with ti
This is the first lack shown by these resulting arrows. T
second is that they do not point upward as required. T
reason for this net rotation can be found in the Cornu sp
~Fig. 5!, which predicts thesame netrotation for all later
times. The third deficiency is that the resulting arrows
crease in length with time. All of these deficiencies spri
from the failure of the computer program to properly su
the results over ALL paths~all worldlines! between each
initial arrow and the final arrow. We will now correct thes
insufficiencies to construct the free-particle propagator.

„15… Predicting the properties of the propagator.
From a packaged list, the student chooses~and may
modify! a trial propagator function. The computer then a
plies it to EACH arrow in the initial wavefunction of Fig. 8
as this arrow influences the resulting arrow at the sin
detection event later in time, then sums the results for
initial arrows. What can we predict about thepropertiesof
this propagator function?

~a! By trial and error, the student will find that the prop
gator must include an initial angle ofminus 45° in
order to cancel the rotation of the resultant arro
shown in Fig. 8.

~b! We assume that the rotation rate in space and time

Figure 8. Resulting arrows at different times, derived naively from
initial wavefunction that is uniform in profile and very wide along thex
axis (extending in both directions beyond the segment shown as par
arrows at the bottom of the screen). The resulting arrows at three la
times, shown at one-fifth of their actual lengths, are each calculated
rotating every initial arrow along the single direct worldline connecting
with the detection event and summing the results. The resulting arrows
(1) too long, (2) point in the wrong direction, and (3) incorrectly increa
in length with time.
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the trial free-particle propagator is given by frequen
Eq. ~2! with PE equal to zero, applied along the dire
worldline.

~c! The propagator must have a magnitude that decre
with time to counteract the time increase in mag
tude displayed in Fig. 8.

„16… Predicting the magnitude of the propagator.
The following argument leads to a trial value for the ma
nitude of the propagator: Figs. 3–5 suggest that most of
contributions to the arrow at the detector come from wor
lines along which the quantum stopwatch rotation diffe
by half a revolution or less from that of the direct worl
line. A similar argument leads us to assume that the m
influence that the initial wavefunction has at the detect
event results from those initial arrows, each of which e
ecutes one-half rotation or less along the direct worldline
the detection event. The ‘‘pyramid’’ in Fig. 9 display
those worldlines that satisfy this criterion.@The vertical
worldline to the apex of this pyramid corresponds to ze
particle velocity, so zero kinetic energy, and therefore z
net rotation according to Eq.~2!.#

Let X be the half-width of the base of the pyram
shown in Fig. 9, and letT be the time between the initia
wavefunction and the detection event. Then Eq.~2! yields
an expression that relates these quantities to the assu
one-half rotation of the stopwatch along the pyramid
slanting right-hand worldline, namely,

number of rotations5
1

2
5

KE

h
T5

mv2

2h
T5

mX2

2hT2 T

5
mX2

2hT
. ~4!

Solving for 2X, we find the width of the pyramid bas
in Fig. 9 to be

Figure 9. Similar to Fig. 8. Here the ‘‘pyramid’’ indicates those direc
worldlines from the initial wavefunction to the detection event for wh
the number of rotations of the quantum stopwatch differs by one-
revolution or less compared with that of the shortest (vertical) worldlin
(The central vertical worldline implies zero rotation.)
s

d

2X52S hT

m D 1/2

. ~5!

The arrows in the initial wavefunction that contribute si
nificantly to the resulting arrow at the detection event
along the base of this pyramid. The number of these arro
is proportional to the width of this base. To correct t
magnitude of the resulting arrow, then, we divide by th
width and insert a constant of proportionalityB. The con-
stantB allows for the arbitrary spacing of the initial arrow
~spacing chosen by the student! and provides a correction
to our rough estimate. The resulting normalization const
for the magnitude of the resulting arrow at the detector

S normalization
constant for
magnitude of

resulting arrow
D 5BS m

hTD 1/2

. ~6!

The square-root expression on the right-side of Eq.~6!
has the units of inverse length. In applying the normaliz
tion, we multiply it by the spatial separation between ad
cent arrows in the wavefunction.

The student determines the value of the dimension
constantB by trial and error, as described in the followin
step.

„17… Heuristic derivation of the free-particle propa-
gator. Using an interactive computer program, the stud
tries a propagator that gives each initial arrow a twist
245°, then rotates it along the direct worldline at a ra
computed using Eq.~2! with PE50. The computer applies
this trial propagator for the timeT to EVERY spatial sepa-
ration between EACH arrow in the initial wavefunction an
the desired detection event, summing these contribution
yield a resulting arrow at the detection event. The compu
multiplies the magnitude of the resulting arrow at the d
tector by the normalization constant given in Eq.~6!. The
student then checks that for a uniform initial wavefuncti
the resulting arrow points in the same direction as the ini
arrows. Next the student varies the value of the constanB
in Eq. ~6! until the resulting arrow has the same length
each initial arrow,21 thereby discovering thatB51. ~Nature
is very good to us.! The student continues to use the com
puter to verify this procedure for different time intervalsT
and different particle massesm, and to construct wavefunc
tions~many detection events! at several later times from th
initial wavefunction~Fig. 10!.

„18… Mathematical form of the propagator. The
summation carried out between all the arrows in the ini
wavefunction and each single detection event approxim
the integral in which the propagator functionK is usually
employed22 for a continuous wavefunction,

c~xb ,tb!5E
2`

1`

K~b,a!c~xa ,ta!dxa . ~7!

Here the labela refers to a point in the initial wavefunc
tion, while the labelb applies to a point on a later wave
function. The free-particle propagatorK is usually written23

K~b,a!5S m

ih~ tb2ta! D
1/2

exp
im~xb2xa!2

2\~ tb2ta!
, ~8!
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where the conventional direction of rotation is count
clockwise, zero angle being at a rightward orientation
the arrow. Notice the difference betweenh in the normal-
ization constant and\ in the exponent. The square-ro
coefficient on the right side of this equation embodies
only the normalization constant of Eq.~6! but also the ini-
tial twist of 245°, expressed in the quantityi 21/2. This
coefficient is not a function ofx, so it ‘‘passes through’’
the integral of Eq.~7! and can be thought of as normalizin
the summation as a whole. Students may or may not
given Eqs.~7! and ~8! at the discretion of the instructor
The physical content has been made explicit anyway,
the computer will now generate consequences as the
dent directs.

E. Propagation in time of a nonuniform wavefunction

„19… Time development of the wavefunction. With
a verified free-particle propagator, the student can now p
dict the time development ofany initial one-dimensional
free-particle wavefunction by having the computer ap
this propagator to all arrows in the initial wavefunction
create each arrow in the wavefunction at later times. Fig
11 shows an example of such a change with time.

„20… Moving toward the Schrödinger equation.
Students can be encouraged to notice that an initial wa
function very wide in extent with a ramp profile~constant
slope, i.e., constant firstx derivative! propagates forward in
time without change. We can then challenge the studen
construct for a free particle an initial wavefunction offinite
extent in thex direction that does not change with tim
Attempting this impossible task is instructive. Why is th
task impossible? Because the profile of an initial wavefu
tion finite in extent necessarily includeschangesin slope,

Figure 10. Propagation of an initially uniform wavefunction of very wid
spatial extent (a portion shown in the bottom row of arrows) forward
various later times (upper three rows of arrows), using the correct fr
particle propagator to calculate the arrow at each later point from all
the arrows in the initial wavefunction. The student chooses the wavef
tion in the bottom row, then clicks once above the bottom row for e
later time. The computer then uses the propagator to construct the
wavefunction.
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that is, a secondx derivative. The stage is now set fo
development of the Schro¨dinger equation, which relates th
time derivative of a free-particle wavefunction to its seco
space derivative. We do not pursue this development in
present article.24

F. Wavefunction in a potential

„21… Time development in the presence of a poten-
tial. Equation~2! describes the rotation rate of the qua
tum stopwatch when a potential is present. A constant
tential uniform in space simply changes everywhere
rotation rate of the quantum clock hand, as the student
verify from the display. Expressions for propagators
various potentials, such as the infinitely deep square w
and the simple harmonic oscillator potential, have been
rived by specialists.25 It is too much to ask students t
search out these more complicated propagators by trial
error. Instead, such propagators are simply built into
computer program and the student uses them to explore
consequences for the time development of the wavefu
tion.

G. Bound states and stationary states

„22… Bound states. Once the propagator for a one
dimensional binding potential has been programmed i
the computer, the student can investigate howany wave-
function develops with time in that potential. Typically, th
probability peaks slosh back and forth with time. Now w
can again challenge the student to find wavefunctions
do not change with time~aside from a possible overall ro
tation!. One or two examples provided for a given potent
prove the existence of thesestationary states,challenging
the student to construct others for the same potential.
student will discover that for each stationary state all
rows of the wavefunction rotate in unison, and that t

-

Figure 11. Time propagation of an initial wavefunction with a ‘‘hole’’ in
it, using the verified free-particle propagator. The student chooses
initial wavefunction and clicks once for each later time. The compu
then uses the correct free-particle propagator to propagate the ini
wavefunction forward to this later time, showing that the ‘‘hole’’ sprea
outward.
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more probability peaks the stationary-state wavefunct
has, the more rapid is this unison rotation. This leads
discrete energies as a characteristic of stationary state

Spin must be added as a separate consideration in
treatment, as it must in all conventional introductions
nonrelativistic quantum mechanics.

II. EARLY TRIALS AND STUDENT RESPONSE

For three semesters, fall and spring of the academic y
1995–96 and fall of 1996, Feynman’s popular QED bo
was the basis of an online-computer-conference coll
course called ‘‘Demystifying Quantum Mechanics,’’ take
by small groups of mostly high-school science teache
The course covered steps 1–11 that were described ea
The computer-conference format is described elsewher26

Students used early draft software to interact with F
nman’s sum-over-paths model to enrich their class disc
sions and to solve homework exercises.

Because the computer displays and analyzes paths
plored by the particle, no equations are required for the fi
third of the semester. Yet, from the very first week, disc
sions showed students to be deeply engaged in fundam
questions about quantum mechanics. Moreover, the s
ware made students accountable in detail: exercises c
be completed only by properly using the software.

How did students respond to the sum-over-paths
mulation? Listen to comments of students enrolled in
fall 1995 course.~Three periods separate comments by d
ferent students.!

‘‘The reading was incredible . . . I really get a
kick out of Feynman’s totally off-wall way of
describing this stuff . . . Truly a ground-
breaker! . . . He brings up some REALLY in-
teresting ideas that I am excited to discuss with
the rest of the class . . . I’m learning twice as
much as I ever hoped to, and we have just
scratched the surface . . .It’s all so profound. I
find myself understanding ‘physics’ at a more
fundamental level . . . I enjoy reading him be-
cause he seems so honest about what he~and
everyone else! does not know . . . Man, it made
me feel good to read that Feynman couldn’t
understand this stuff either . . . it occurs to me
that the reading is easy because of the software
simulations we have run . . . thesoftware plays
a very strong role in helping us understand the
points being made by Feynman.’’

During the spring 1996 semester, a student remar
in a postscript:

‘‘PS—Kudos for this course. I got an A in my
intro qm class without having even a fraction of
the understanding I have now . . . This all
makes so much more sense now, and I owe a
large part of that to the software. I never@had#
such compelling and elucidating simulations in
my former course. Thanks again!!!’’

At the end of the spring 1996 class, participants co
pleted an evaluative questionnaire. There were no subs
tial negative comments.27 Feynman’s treatment and th
software were almost equally popular:
s

r

r.

-

-

al
-
d

-

Q5. I found Feynman’s approach to quantum mechanic
be

boring/irritating 1 2 3 4 5 fascinating/
stimulating

student choices: 0 0 0 2 11 ~average: 4.85!.

Q18. For my understanding of the material, the softw
was

not important 1 2 3 4 5 very important

student choices: 0 0 1 1 11 ~average: 4.77!.

Student enthusiasm encourages us to continue the
velopment of this approach to quantum mechanics. We
ognize, of course, that student enthusiasm may be gra
ing, but it does not tell us in any detail what they ha
learned. We have not tested comprehensively what stud
understand after using this draft material, or what new m
conceptions it may have introduced into their mental p
ture of quantum mechanics. Indeed, we will not have
basis for setting criteria for testing student mastery of
subject until our ‘‘story line’’ and accompanying softwar
are further developed.28

III. ADVANTAGES AND DISADVANTAGES OF THE SUM-OVER-PATHS
FORMULATION

The advantages of introducing quantum mechanics us
the sum-over-paths formulation include the following.

~i! The basic idea is simple, easy to visualize, a
quickly executed by computer.

~ii ! The sum-over-paths formulation begins with a fr
particle moving from place to place, a natural exte
sion of motions studied in classical mechanics.

~iii ! The process ofsampling alternative paths~steps
1–11 and their elaboration! reveals essential feature
of quantum mechanics and can provide a se
contained, largely nonmathematical introduction
the subject for those who do not need to use qu
tum mechanics professionally.

~iv! Summingall paths with the propagator permits nu
merically accurate results of free-particle motio
and bound states~steps 12–22!.

~v! One can move seamlessly back and forth betw
classical and quantum mechanics~see Figs. 3 and 4!.

~vi! Paradoxically, although little mathematical forma
ism is required to introduce the sum-over-paths f
mulation, it leads naturally to important mathema
cal tools used in more advanced physics. ‘‘Feynm
diagrams,’’ part of an upper undergraduate or grad
ate course, can be thought of as extensions of
meaning of ‘‘paths.’’29 The propagator is actually a
example of a Green’s function, useful througho
theoretical physics, as are variational methods30 in-
cluding the method of stationary phase. Wh
formalism is introduced later, the propagator
Dirac notation has a simple form
K(b,a)5^xb ,tbuxa ,ta&.

The major disadvantages of introducing quantum m
chanics using the sum-over-paths formulation include
following.
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~i! It is awkward in analyzing bound states in arbitra
potentials. Propagators in analytic form have be
worked out for only simple one-dimensional bindin
potentials.

~ii ! Many instructors are not acquainted with teachi
the sum-over-paths formulation, so they will need
expend more time and effort in adopting it.

~iii ! It requires more time to reach analysis of bou
states.

IV. SOME CONCLUSIONS FOR TEACHING QUANTUM MECHANICS

The sum-over-paths formulation~steps 1–11! allows physi-
cists to present quantum mechanics to the entire intellec
community at a fundamental level with minimum manip
lation of equations.

The enthusiasm of high-school science teachers
ticipating in the computer conference courses tells us
the material is motivating for those who have already h
contact with basic notions of quantum mechanics.

The full sum-over-paths formulation~steps 1–22!
does not fit conveniently into the present introductory tre
ments of quantum mechanics for the physics major. It c
stitutes a long introduction before derivation of the Sch¨-
dinger equation. We consider this incompatibility to be
major advantage; the attractiveness of the sum-over-p
formulation should force reexamination of the entire intr
ductory quantum sequence.
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component arrows.~3! The formation of a smooth Cornu spiral at th
detection event requires that thedifferencein rotation to a point on the
final wavefunction be small between arrows that are adjacent in
original wavefunction. But for very short times between the initial a
later wavefunctions, some of the connecting worldlines are ne
horizontal in spacetime diagrams similar to Figs. 3 and 4, correspo
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frequencyf 5KE/h. Under such circumstances, thedifferencein ro-
tation at an event on the final wavefunction can be great betw
arrows from adjacent points in the initial wavefunction. This may le
to distortion of the Cornu spiral or even its destruction. In summar
finite series of equally spaced arrows can adequately represent a
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